Cadence Design Systems, Inc. today unveiled its Tensilica AI Platform for accelerating AI SoC development, including three supporting product families optimized for varying data and on-device AI requirements. Spanning the low, mid and high end, the comprehensive Cadence Tensilica AI Platform delivers scalable and energy-efficient on-device to edge AI processing, which is key to today’s increasingly ubiquitous AI SoCs. A new companion AI neural network engine (NNE) consumes 80% less energy per inference and delivers more than 4X TOPS/W compared to industry-leading standalone Tensilica DSPs, while neural network accelerators (NNAs) deliver flagship AI performance and energy efficiency in a turnkey solution.
Targeting intelligent sensor, internet of things (IoT) audio, mobile vision/voice AI, IoT vision and advanced driver assistance systems (ADAS) applications, the Tensilica AI Platform delivers optimal power, performance and area (PPA) and scalability with a common software platform. Built upon the highly successful application-specific Tensilica DSPs already shipping in volume production in leading AI SoCs for the consumer, mobile, automotive and industrial markets, the Tensilica AI Platform product families include:
- AI Base: Includes the popular Tensilica HiFi DSPs for audio/voice, Vision DSPs, and ConnX DSPs for radar/lidar and communications, combined with AI instruction-set architecture (ISA) extensions.
- AI Boost: Adds a companion NNE, initially the Tensilica NNE 110 AI engine, which scales from 64 to 256 GOPS and provides concurrent signal processing and efficient inferencing.
- AI Max: Encompasses the Tensilica NNA 1xx AI accelerator family—currently including the Tensilica NNA 110 accelerator and the NNA 120, NNA 140 and NNA 180 multi-core accelerator options—which integrates the AI Base and AI Boost technology. The multi-core NNA accelerators can scale up to 32 TOPS, while future NNA products are targeted to scale to 100s of TOPS.
All of the NNE and NNA products include random sparse compute to improve performance, run-time tensor compression to decrease memory bandwidth, and pruning plus clustering to reduce model size.
Comprehensive common AI software addresses all target applications, streamlining product development and enabling easy migration as design requirements evolve. This software includes the Tensilica Neural Network Compiler, which supports these industry-standard frameworks: TensorFlow, ONNX, PyTorch, Caffe2, TensorFlowLite and MXNet for automated end-to-end code generation; Android Neural Network Compiler; TFLite Delegates for real-time execution; and TensorFlow Lite Micro for microcontroller-class devices.
“AI SoC developers are challenged to get to market faster with cost-effective, differentiated products offering longer battery life and scalable performance,” said Sanjive Agarwala, corporate vice president and general manager of the IP Group at Cadence. “With our mature, extensible and configurable platform based on our best-in-class Tensilica DSPs and featuring common AI software, Cadence allows AI SoC developers to minimize development costs and meet tight market windows. By enabling AI across all performance and price points, Cadence is driving the rapid deployment of AI-enabled systems everywhere.”