Magnachip Semiconductor Corporation announced today that the Company released its 6th-generation 600V Super Junction Metal Oxide Semiconductor Field Effect Transistor (SJ MOSFET) enhanced with microfabrication technology.
This 6th-generation 600V SJ MOSFET (MMD60R175S6ZRH) was built on the 180nm microfabrication process and Magnachip’s latest design technology. This sophisticated technology improves upon the previous generation of SJ MOSFETs by narrowing the cell-pitches by 50% and lowering the RDS(on) (On resistance: the resistance value between the drain and the source of MOSFETs during on-state operation) by 42%. As a result, this product comes in the same Decawatt Package (DPAK), while offering the low RDS(on) of 175mΩ and outstanding power density.
Furthermore, the total gate charge is lowered by approximately 29% compared to the previous generation, resulting in reduced switching loss and enhanced power efficiency. The power efficiency is in fact one of the key features of this product, as it gives product designers flexibility with regards to various applications. In addition, a Zener diode is embedded between the gate and the source to strengthen the ruggedness and reliability of the MOSFET in an application and prevent it from sustaining damage caused by external surges or electrostatic discharges.
With its high efficiency, flexible design and reliability, this new 600V SJ MOSFET can be used in a wide range of applications, such as servers, OLED TVs and laptop fast chargers. Omdia, a global market research firm, estimates that worldwide server shipments will grow by 8% annually from 2023 to 2027, while global OLED TV shipments will increase 11% every year, reaching a total of 9.3 million units in 2027.
“Following the launch of this MOSFET, Magnachip plans to unveil additional 6th-generation SJ MOSFETs, including those with a fast recovery body diode, in 2024,” said YJ Kim, CEO of Magnachip. “Aligned with customer demand, our technical innovation will further strengthen our industry presence and global market penetration.”