OpenLight and Tower Semiconductor today announced the successful demonstration of the 400G/lane modulator on Tower’s commercially available, integrated silicon photonics platform, PH18DA, achieving a better than 3.5db extinction ratio using the industry-standard PAM-4 modulation format and at a drive voltage of 0.6 volts peak-to-peak. The 400G demonstration is built using OpenLight’s IP on Tower’s existing silicon photonics platform already supporting customers at 100G and 200G/lane.
The integrated silicon photonics demonstration is designed to support next-generation 400G/lane optical communication architectures, offering a scalable solution from 100G to 200G to 400G to fill the growing demand for high-speed data transfer in cloud computing, AI and ML applications. Operating at 400G per lane, across all four CWDM (Coarse Wavelength Division Multiplexing) wavelengths, this enables a commercially viable path for both DR8 and FR4 next-generation 3.2Tb solutions and beyond.
Currently, pure silicon-based modulators are unable to support bit rates of 400G, pointing out a clear need for a cost-effective solution in the industry. For datacom and AI applications, including LPO and CPO, heterogeneous integrated based devices deliver significant advantages: small size, high bandwidth, low drive voltage and volume manufacturable on a silicon photonics platform. In addition to the heterogeneous integration of 400G modulators, lasers and optical amplifiers all on a single, compact, cost- and power-efficient photonic integrated circuit (PIC) are available on the platform.
“Our partnership with Tower represents a critical step in the integration of advanced silicon photonics into the datacom landscape. The success of this demonstration sets the stage for groundbreaking advancements in high-speed networking,” said Dr. Adam Carter, CEO of OpenLight. “Utilizing our existing 200G heterogeneous modulator design, we have now future-proofed customers’ PASIC designs from 100G to 200G to 400G per lane, minimizing design, layout and time to market, as this 400G modulator is a drop-in replacement for existing 200G modulator PASIC designs. The other added benefit of using the same design is the proven high-reliability performance and the ability to use flip chip processes when packaging into an integrated optical sub-assembly.”
“We’re pleased to collaborate with OpenLight, leveraging their cutting-edge silicon photonics technology to create a cost-effective approach to support 400G/lane. This is an extension of our PH18DA platform currently supporting customers at 100G and 200G/lane and now providing a robust solution for 400G/lane that is immediately ready for customer prototyping. This is a significant step toward providing scalable, reliable, high-performance and manufacturable solutions for the next generation of optical communication technology,” said Russell Ellwanger, CEO of Tower Semiconductor. “By utilizing Tower’s PH18DA platform, this collaboration allows OpenLight’s heterogeneous integration technology to provide a secure path to higher speeds without the need for complex and expensive integration alternatives like Thin Film Lithium Niobate (TFLN), BTO or polymers.”