Organic electronics enable everyday devices such as displays, lighting and sensors to have high energy efficiency, light weight and low manufacturing costs. These benefits have made organic electronics a mainstream technology today and great steps have been taken to realize the technology’s true potential. Finally, flexible and stretchable circuitry can be fabricated, paving the way for wearable devices and e-textiles.
This technological leap has left behind traditional encapsulation methods, such as heavy glass lids with limited stretchability. The biggest downside of organic electronics, however, is their susceptibility to oxidation by moisture. This moisture ingress can have a direct impact on device performance and longevity. To address this challenge, thin film encapsulation solutions (TFEs) have been introduced as a key technology, heavily relying on vacuum-based thin film deposition techniques like atomic layer deposition (ALD). Ultra-thin ceramic ALD films serve as an effective moisture barrier but can crack under stress unless combined with more elastic molecular layer deposition (MLD) films.
Picosun has brought a stable MLD process to the realm of batch processing with PICOSUN® P-300B ALD tool with batch sizes up to 27 pieces of 200mm wafers. The results show wafer-to-wafer uniformity of 1% and several Å/min growth rates. When combined with ALD in a nanolaminate, the resulting TFE/moisture barrier can resist defects when up to 2% tensile stress is applied and the coatings exhibit a steady-state and effective water vapour transfer rate (WVTR) in a range of 10-6 g/m2*d in ambient conditions, when measured from a very large sample area (3320 mm2) to reflect a real-world application.
“We see immense possibilities for our customers with the Picosun’s proven capabilities of depositing ultra-barrier performance TFEs on large scale. As an example, the future OLED manufacturing can be upscaled without fearing for the reliability of the devices,” states Juhana Kostamo, VP, Industrial Business Area of Picosun Group.