Sony Semiconductor Solutions to Release SWIR Image Sensor

Sony Semiconductor Solutions Corporation (SSS) today announced the upcoming release of the IMX992 short-wavelength infrared (SWIR) image sensor for industrial equipment, with the industry's highest pixel count, at 5.32 effective megapixels.

Sony Semiconductor Solutions Corporation (SSS) today announced the upcoming release of the IMX992 short-wavelength infrared (SWIR) image sensor for industrial equipment, with the industry’s highest pixel count, at 5.32 effective megapixels.

The new sensor uses SSS’s proprietary Cu-Cu connection to achieve the industry’s smallest pixel size of 3.45 μm among SWIR image sensors. It also features an optimized pixel structure for efficiently capturing light, enabling high-definition imaging across a broad spectrum ranging from the visible to invisible short-wavelength infrared regions (wavelength: 0.4 to 1.7 μm). Furthermore, new shooting modes deliver high-quality images with significantly reduced noise in dark environments compared to conventional products.

In addition to this product, SSS will also release the IMX993 with a pixel size of 3.45 μm and an effective pixel count of 3.21 megapixels to further expand its SWIR image sensor lineup. These new SWIR image sensors with high pixel counts and high sensitivity will help contribute to the evolution of various industrial equipment.

In the industrial equipment domain in recent years, there has been increasing demand for improving productivity and preventing defective products from leaving the plant. In this context, the capacity to sense not only visible light but also light in the invisible band is in demand. SSS’s SWIR image sensors, which are capable of seamless wide spectrum imaging in the visible to invisible short-wavelength infrared range using a single camera, are already being used in various processes such as semiconductor wafer bonding and defect inspection, as well as ingredient and contaminant inspections in food production.

The new sensors enable imaging with higher resolution using pixel miniaturization, while enhancing imaging performance in low-light environments to provide higher quality imaging in inspection and monitoring applications conducted in darker conditions. By making the most of the characteristics of short-wavelength infrared light, whose light reflection and absorption properties are different from those of visible light, these products help to further expand applications in such areas as inspection, recognition and measurement, thereby contributing to improved industrial productivity.

Main Features

*2

To use DRRS, the downstream system must have frame memory to perform image calculation.

Exit mobile version